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Structural
Forms

/ SYLLABUS OUTLINE N\

Areas to be studied (in an applied context):
e Structural forms, natural and manufactured. ® Singly and doubly ruled surfaces. ® The hyperbolic paraboloid as a
ruled surface. ® The hyperbolic paraboloid as a surface of translation. ® Plane directors. ® The hyperboloid of
revolution, projections and sections. ® Sections through singly and doubly ruled surfaces. ® The geodesic dome of not
more than four points of frequency.

Learning outcomes
Students should be able to:

Higher and Ordinary levels

Investigate the development of structural forms in a historical context.

Identify the key structural forms including arches, domes, vaults, frames and surface structures.
Produce line drawings of the basic structural forms.

Produce two-dimensional drawings of arches, domes, vaults and surface structures.

Construct a hyperbolic paraboloid as a ruled surface.

Determine the true shape of sections through curved surfaces.

Project views and sections of a hyperboloid of revolution.

Higher level only

«  Relate the key properties of structural forms to their design and construction.

 Produce three-dimensional drawings of arches, domes, vaults and surface structures.

«  Determine plane directors for ruled surfaces, and construct ruled surfaces given plane directors and directrices.
* Project views of a hyperbolic paraboloid defined as a surface of translation.

+ Construct geodesic domes of not more than four points of frequency.

K + Investigate and represent structural forms as they occur in the environment.

_/

In this chapter we will be looking at the historical development of some common structural forms including the arch,

the dome and the vault. We will then move on to look at some structural forms of special interest, the hyperbolic
parabaloid and the hyperboloid of revolution.

Column and Beam

Using columns and beams is the simplest way to make an opening in a wall. The column
or post is the vertical member and the beam is the horizontal member. The beam
supports the weight (load) above it and its own weight. This weight is then transferred
to the columns and from these to the lower structure. This type of construction was

used in prehistoric times and is still used in modern day structures.

Fig. 18.1 | span |
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As has been explained earlier at the introduction to this topic, the hyperbolic paraboloid can be seen as a structure made
up of straight line elements obeying certain rules or as a parabolic curve sliding on its vertex along an inverted parabolic

curve. We will now look at some problems based on this type of model.

Fig. 18.80 shows a pictorial view of a shell structure. The surface of
the structure is generated by translating the parabola ABC in a vertical
position along the parabola BE whose vertex is at E.

Draw the plan and elevation of the structure.
Scale 1:200

(1) Draw the parabola ABC.

. (2) In front elevation draw

point B and E. h
(3) Construct the parabola BE
ensuring that the vertex is
at E.

(4) All vertical sections will

LEV EL

produce parabolas which
are part of the ABC

parabola. The end curve o ‘ | | | |
DEF is part of the ABC

FD ¢

parabola. The width w is

=8 CA |
AN - Front Elevati
found in plan by stepping Falo .
height h down from the top
) T —
of parabola ABC giving

H1GHER

| width w.

| (5) Curves AD and CF are /|
hyperbolas and are \ \\
constructed as explained \ - , | _,_,.,_ + o

earlier.

Plan

Fig. 18.81
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Fig. 18.82 shows the plan and elevation of a shell
structure which is in the form of a hyperbolic
paraboloid. It is formed by sliding parabola ABC in a
vertical position along the parabola BE whose vertex

is at E. The shell has been cut as shown.
() Draw the plan and elevation of the unit.
(i) Project an end view of the unit.

Scale 1:500

Fig. 18.82

(1) Draw the parabola ABC.
(2) Construct the parabola BE in elevation having its

vertex at E.

(3) In the plan, the width of the end DEF is not given
and must be found. Take the height of E in elevation
and step it down from the top of parabola ABC. This
gives the width of DF in plan.

(4) The left side of the
plan can be
completed and the
right side of the

elevation.

(5) w, and w, are taken
from plan, stepped
out from the axis of
parabola ABC to find
h, and h, which are
stepped down from
BE.

(6) h,and h, are taken
from elevation,

J
Front Elevation

.
H

J

stepped down from

Fig. 18.83 the vertex of

parabola ABC to find

w, and w, which find

Plan points in the plan.
(7) The end view is
projected from front

elevation and plan.
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Fig. 18.84

Fig. 18.85

alf of parabola ABC

Fig. 18.86

Fig. 18.84 shows a pictorial view of a shell structure. Six of
these units are combined to form a total roof surface as
shown in plan in Fig. 18.85. The surface of the unit is
generated by translating the parabola ABC in a vertical
position along the parabola BC whose vertex is at D.

() Draw the plan and elevation of the unit.

(ii) Project an end view of the unit.

(ili) Find the true shape of curve DF.

Scale 1:200

Draw parabola ABC.

Draw the rectangle that contains the front elevation and construct the half parabola
BD.

Draw the plan of the uncut shell structure by taking heights from parabola BD to the
xy line (e.g. H,) and step these heights down from the top of parabola ABC to give
widths (e.g. W, ) which are used in the plan.

Cut the shell structure in plan to form an inclusive angle of 60° thus finding E and F.
Project E and F to the xy line and join to B. The left of the front elevation is completed
and the right of the plan is completed.

Take heights in elevation from parabola BD to straight line BFE (e.g. H,).

Step these heights down from the top of parabola ABC to find widths which are used
in the plan (e.g. W,).
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(8) Widths are now taken in plan from the axis to line DE (e.g. W5).

(9) Use these widths on the parabola ABC to find heights from the top of the parabola down to the curve (e.g. H,).
(10) The end view is projected in the normal way.

(11) The true shape of curve DF is found by projecting an auxiliary elevation with x, y, parallel to line DF in plan.

Geodesic Domes

A geodesic dome is a type of structure shaped like a piece of a sphere. This structure is made up of a complex network of
triangles that form a roughly spherical surface. The more triangles, the more closely the dome approximates the shape of
a true sphere. The geodesic dome was invented by Buckminster Fuller in the late 1940s. He hoped to use such domes to
improve the housing of humanity and envisaged that giant domes would cover whole cities.

Geodesic domes are light structures yet very rigid and inherently strong. They have no need for internal supports, as they
are self-supporting and therefore leave the internal floor area completely open and unobstructed. They are attractive
aesthetically and philosophically because you are getting more internal area using less building materials. There are,
unfortunately, some severe practical difficulties in constructing these ‘perfect buildings, which has limited their use to
public spaces, exhibition halls and enthusiast projects. With so many edges and joints it is difficult and expensive to
waterproof these domes. Rain seems to find a way in, no matter what precautions are taken. Furthermore, the fact that
the internal surfaces are curved can lead to its own problems in a man-made world that favours rectangular, more

modular furniture.

Spherical Geometry

The term ‘geodesic’ comes from the Greek geo, earth, and daiesthai, to
divide. We have earth-dividing domes. For a sphere, the shortest distance Great cifcle
between two points A and B on the surface, travelling along the sphere’s
surface, is called a geodesic. A geodesic is always part of the
circumference of a circle which has its centre at the centre of the sphere.
Such a circle is called a great circle. An unlimited number of great
circles can be drawn on the sphere’s surface. Other smaller circles can be
drawn on the surface but their centres will not coincide with the sphere’s

centre. These lesser circles play little or no part in dome theory. Fig. 18.87

The two points on a sphere that the geodesic line connects can also be
connected by a chord that cuts through the sphere. Geodesic domes use
these chords as struts. The struts form triangles and it is from these
triangles that the dome forms its strength.

Before looking at the make-up of the triangles in a geodesic dome we
must first look at much more simple shapes, on which the more
complex geodesic shapes are based, the platonic solids.

Fig. 18.88

Lesser circles
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There are only five regular polyhedra: the tetrahedron, cube,
octahedron, dodecahedron and icosahedron. For each of these solids
" all the faces are similar regular polygons, all the edges are equal in

. length and the same number of faces meet at every vertex.

' In order to form a three-dimensional solid there must be a

" minimum of three faces meeting at any one vertex. By looking at the

| A regular hexagon which is the next polygon in line has an interior

angle of 120°. Three hexagonal faces meeting at a vertex will have

pentagons, again only three can meet at each vertex, thus forming a

234  GRAPHICS IN DESIGN AND COMMUNICATION

Tetrahedron

- Why only five regular polyhedra? Fig. 18.89 4 faces, 4 vertices, 6 edges

In any convex polyhedron the sum of the face

angles at a vertex is always less than 360°.

interior angles of regular polygons which can act as faces, it is Cube

evident that only three polygons may be used. Fig. 18.90 G Taces, 8 vertices, 12 edges

(1) Equilateral triangle with interior angles of 60°.
(2) Square with interior angles of 90°.

(3) Regular pentagon with interior angles of 108°.

interior angles adding up to exactly 360°, not less than 360° and ot

- therefore do not obey the rule. Fig. 18.91 8 faces, 6 vertices, 12 edges

By using equilateral triangles to form a regular polyhedron, there
can be three, four or five of them meeting at a vertex, any more and

the rule will be broken. From this we get the tetrahedron,

octahedron and isosahedron. By using squares, there can only be

three at each vertex, thus forming a cube. Finally, by using

dodecahedron.

Dodecahedron

Fig. 18.92 12 faces, 20 vertices, 30 edges

lcosahedron
Fig. 18.93 20 faces, 12 vertices, 30 edges
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Faces, Vertices and Edges

There is obviously a relationship between the number of faces, vertices and edges for each of these regular polyhedra.
This relationship was discovered by Leonhard Euler (1707-83).

Faces + Vertices — Edges = 2

F+V-E=2

This relationship stands true for the five regular polyhedra mentioned earlier, but also for any polyhedra, regular or not,
which can be enclosed in a sphere having each vertex touching the sphere surface.

This formula is useful when working on domes because it can help to count vertices.

Platonic Solids and the Sphere

Each of the platonic solids can be circumscribed by a sphere, such that each vertex of the solid rests on the sphere surface
and each edge of the surface forms a chord joining two such points. As such these five solids form the basis of geodesic
dome construction. They are, however, poor approximations to a sphere. Of the five the tetrahedron, octahedron and
icosahedron offer better stability because of their triangular make-up. If we look at the icosahedron which has 20
triangular faces, the vertices are all equidistant from the centre so they determine a sphere. If we subdivide each of the
triangular faces into smaller triangles, then some of the vertices of the smaller triangles lie inside the sphere rather than
on it. By pushing these points radially outwards from the icosahedron until they meet the sphere, we arrive at the vertices
of our geodesic sphere. Obviously by pushing the corners of the smaller triangles out to the sphere surface we are both
changing the lengths of the triangle sides and their angles. '

Frequency of a Geodesic Dome

The frequency of a geodesic dome is the measure of the number

of triangles into which each face is subdivided. A 1-frequency
1-Frequency dome or sphere is just an icosahedron (for example) or part of an

icosahedron whose faces have not been subdivided. For a 2-

Fig. 18.94 frequency dome, the sides of each icosahedral face are divided

into two so that each face is divided into four smaller triangles.
For a 3-frequency dome the sides are divided in three, so that the

faces become nine smaller triangles and so on.

2-Frequency

Fig. 18.95

3-Frequency

Fig. 18.96
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| Fig. 18.97

The roundness of the dome is improved by dividing the edges into shorter lengths and raising more points to the surface
| of the sphere. Raising the midpoint of an edge to the sphere creates two shorter edges, both equal, which give a better
| approximation to the curvature of the sphere. Increasing the subdivisions to 3-frequency or 4-frequency produces better

approximations and struts of varying lengths. The lengths of these struts may be calculated or can be found from tables.

lal =|c|

The lengths of the sides of the various triangles making up a dome may be calculated from tables. The tables are
| generally given based on a dome/sphere of one-metre radius. To make a dome of another radius it is simply a matter of

multiplying the chord factor by the required radius.

Strut length = Dome/Sphere radius x Strut factor

Strut Strut factor Req. for dome  Req. for sphere
A 1.05146 25 30

Fig. 18.99

“ Fig. 18.100

lcosahedral dome
1-frequency
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|cosahedral dome
2-frequency

Fig. 18.102

3-FREQUENCY (ICOSAHEDRAL)

Req. for dome

Strut Strut factor 3/8
A 0.34862 30
B 0.40355 40
C 0.41241 50

5/8  Req. for sphere

2-FREQUENCY (ICOSAHEDRAL)

Strut Strut factor Req. for dome  Req. for sphere
A 0.61803 35 60
B 0.54653 30 60

30 60
55 90
80

Fig. 18.104

5/8 Icosahedral dome
3-frequency
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Strut Strut factor Req. for dome  Req. for sphere

A 0.25318 30 60
0.29524 30 60
0.29453 60 120
0.31285 /70 120
0.32492 30 60
0.29859 30 60

m m &9 &

lcosahedral dome

Fig. 18.106 4-frequency

d ow to Draw a sic D

e
e

| As has been mentioned earlier, all geodesic domes are derived from one or other of the platonic solids. Of these five

solids, the three that are made up with triangles are most favoured:
| the tetrahedron — 4 faces,

the octahedron — 8 faces,

the 1cosahedron — 20 faces.

- The icosahedron produces domes that most closely match a sphere.

- We first look at how to draw these three solids and how to find their circumscribing spheres.
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Tetrahedron

(1) The plan of a tetrahedron resting on

()

3)
(4)

one of its faces is an equilateral
triangle and its apex 0 is found by
bisecting the angles.

The end view can be used to find the
tetrahedron’s height as it shows edge
0,3 as a true length.

Complete the front elevation.

The centre of the circumscribing
sphere lies on the axis of the solid
and touches all vertices. In the end
view, bisect true length 0,3 to
intersect the axis through 0 to locate

c. Draw the sphere in all views.

0
1,4 2:3
\
@,?9//)
X 5]
| 4‘/ \ 3
05
True shape
1
Icosahedron
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1,3

N 0

Plan i
End View
Fig. 18.107

Octahedron

(1) The plan of the octahedron appears as a square with the diagonals
joined.

(2) The height for the elevation is found by drawing the true shape of one
of the faces and using its length as shown to locate points 1 and 4.

(3) The circumscribing sphere is drawn in elevation and then in plan.

Fig. 18.108

—

(1)

(2)

The plan of the top five triangles of an icosahedron having its apex facing straight up, will form a perfect pentagon.

The sides of the pentagon equal the true length of each edge of the icosahedron and the edges leading up to the

apex appear as spokes of this pentagon leading into the centre.

Construct the pentagon in plan.
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Draw lines from each of the vertices of the
pentagon to its centre to form the spokes.

Find a starting point for the lower pentagon by
extending one of these spokes, e.g. 3,0 to
intersect a circumscribing circle about the
pentagon. The vertices for the second pentagon
will lie on the same circle.

Complete the plan.

Two heights are needed to draw the elevation.
Find the true shape of one of the faces. Consider
this as a rebatment of the face.

Draw auxiliary views to show face 0,1,2 as an
edge view by viewing along true length 2,1. By
using length L from the true shape height A can
be found.

Similarly, an edge view of surface 1,2,3 will find
height B.

Construct elevation.

X1

|

!

1

Fig. 18.110

Fig. 18.109

— True Length

Circumscribing
Sphere

The circumscribing sphere can easily be
found in elevation. If only a partial
elevation is to be drawn, centre C can be
found by projecting a view showing one
face edge on and one edge as a true length.
By bisecting the true length and extending

to cross the axis centre, C is located.



