

- Answer any three on the A3 sheet overleaf.
- All questions in Section A carry 20 marks each.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry $\mathbf{4 5}$ marks each.
- Five questions are presented.
SECTION C
- Answer any two (i.e. the options you have studied) on drawing in Section C carry $\mathbf{4 5}$ marks each.

General Instructions:

- Construction lines must be shown on all solutions
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres
- Write your Name, School Name and Teacher's Name in the box below and on all other sheets used.

SECTION A - Core - Answer Any Three of the questions on this A3 sheet

A-1. The 3D graphic below shows a concrete stool and table as used in a garden.

A set of diametric axis are shown on the right and the elevation and plan of the table have been
positioned as shown.
Draw the axonometric projection of the table.

A-3. The 3D graphic below shows an arrangement of building blocks.

The drawing on the right is a partially completed is a partially completed
perspective view of the perspective view of the
cube, the cuboid and the cube, the cuboid and the
triangular based prism.
(a) Complete the perspective drawing of the yellow block.
(b) Determine an auxiliary vanishing point for the 45° sloping faces of the blue block and complete the drawing.

A-4. The 3D graphic below shows a sculpture which is based on two intersecting tetrahedrons suspended in a metal disc.
The drawing on the right shows the plan and elevation of the base of a tetrahedron.
(a) Complete the plan of the tetrahedron.
(b) Show clearly how to find the altitude of the tetrahedron and complete the elevation.

Pre-Leaving Certificate Examination, 2014

Design \& Communication Graphics Higher Level Sections B and C (180 marks)

Time: 3 Hours

This examination is divided into three sections:

SECTION A (Core - Short Questions)
SECTION B (Core - Long Questions)
SECTION C (Applied Graphics - Long Questions)

- Four questions are presented.

SECTION A - Answer any three on the accompanying A3 examination paper.

- All questions in Section A carry 20 marks each.
- Three questions are presented.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry $\mathbf{4 5}$ marks each.
- Five questions are presented.

SECTION C - Answer any two (i.e. the options you have studied) on drawing paper.

- All questions in Section C carry $\mathbf{4 5}$ marks each.

General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your name, school name and teacher's name in the box provided on Section A and on all other sheets used.

SECTION B - Core
 Answer any two questions from this section on drawing paper

B-1. A modern building which is made from a series of plane surfaces is shown in the image below.

Fig. B-1 shows the plan and elevation of a model of a similar building. It includes the identical plane surfaces $\mathbf{A B C}$ and $\mathbf{A B D}$, the equilateral triangular surface \mathbf{T} and the rectangular surface \mathbf{R}.

Fig. B-1
(a) Draw the plan and elevation of the identical surfaces $\mathbf{A B C}$ and $\mathbf{A B D}$.
(b) Determine the dihedral angle between the two planes.
(c) Complete the elevation and plan by drawing the equilateral triangle \mathbf{T} and the rectangle \mathbf{R}.
(d) Determine and indicate the horizontal and vertical traces of the oblique plane that contains the surface $\mathbf{B C D}$.

Scale 1:1

B-2. The 3D graphic opposite shows a piece of hollow pipe which is open at both ends and truncated at one end.

The elevation and end elevation of the pipe are shown in Fig. B-2.
(a) Draw the given elevation \mathbf{A} and end elevation and project a plan from the elevation.

(b) The truncation of the pipe produces two ellipses where the internal and external cylindrical surfaces of the pipe are cut. Draw the elevation of one of the focal spheres for the internal ellipse and establish the position of the focal point, the vertex and the directrix for this ellipse.
(c) Find the true shape of this elliptical opening.

Scale 1:4

Fig. B-2

B-3. The image on the right shows a series of intersecting buildings.
Fig. B-3 below shows the incomplete projections of a model of similar intersecting buildings.
(a) In the diagram a rectangular-based prism has been shaped, as shown. Draw the plan and elevation of this solid.
(b) An equilateral triangular prism, of 40 mm side, penetrates the base solid, as shown. Draw the outline plan and elevation of this triangular prism.
(c) Complete the drawing, showing all lines of interpenetration.

Scale 1:1

Fig. B-3

SECTION C - Applied Graphics

Answer Any Two questions (i.e. the options you have studied) from this section on drawing paper.

Geologic Geometry

C-1. (a) The accompanying map, located on the back page of Section A, shows ground contours at 5 m vertical intervals.
$\mathbf{A B C}$ is the centreline of a proposed roadway.
(i) the section of the roadway between \mathbf{A} and \mathbf{B} is level at an altitude of 65 m
(ii) the section from \mathbf{B} to \mathbf{C} is falling uniformly to a level of 50 m at \mathbf{C}.

Using side slopes of 1 in 1 for the embankments and 1 in 1.5 for the cuttings, complete the earthworks necessary to accommodate the roadway on its northern side.

Note: The earthworks on the southern side of the roadway have already been completed.
(b) A borehole is drilled from \mathbf{E} which has an altitude of 75 m in a south westerly direction in plan and has a true inclination of 50° to the horizontal plane.
(i) Draw the projections of this borehole.

The shortest borehole between point \mathbf{D} which has an altitude of 60 m and the borehole at \mathbf{E} is required.
(ii) Draw the plan of this borehole.

Scale 1:1000

Structural Forms

C-2. The graphic on the right shows a building in the form of a hyperboloid of revolution.

Fig. C-2 below shows the plan and elevation of a model of this building which is cut by a vertical section as shown.
(a) Draw the given plan and elevation.
(b) Project an end elevation of the building which will show the true shape of the cut surface.

Scale 1:1

Fig. C-2

Surface Geometry

$\mathbf{C - 3 .}$ The graphic on the right shows a litter bin.

Fig. C-3 below shows the plan and elevation of a model of a similar litter bin.
(a) Draw the given plan and elevation.
(b) Project an end elevation in the direction of arrow \mathbf{A}.
(c) Draw the development of the top surface of the litter bin.

Scale 1:1

Fig. C-3

Dynamic Mechanisms

C-4. (a) The 3D graphic below shows a pull-along toy.
A link mechanism which moves the head of the toy as the wheels rotate is shown in line diagram format in Fig C-4(a).

Crank OA rotates anticlockwise about point \mathbf{O} for one revolution. Crank OA is pivot-jointed to the $\operatorname{arm} \mathbf{A P}$ at the point \mathbf{B}, as shown.

Plot the locus of point \mathbf{P} for one movement.
Scale 1:1

(b) The graphic below shows a spiral staircase which is being constructed. The central spine of the staircase is in the form of a helix.

Fig. C-4(b) on the right shows the elevation of a cylinder with points \mathbf{A} and \mathbf{B} on the front of the cylinder. These points represent the top and bottom point of the central spine of the staircase.
(i) Draw the given elevation and project a plan.
(ii) Determine in the elevation the helical path between \mathbf{A} and \mathbf{B}.
(iii) Determine and indicate the length of the central spine.

Scale 1:20

Fig. C-4(a)

Fig. C-4(b)

Assemblies

C-5. (a) Details of a Wall-Mounted Hand Basin are shown in Fig. C-5. The parts list is given on the right.
Draw a full-size elevation and the sectional elevation A-A, showing the parts fully assembled.
(Any omitted dimensions may be estimated.)
(b) The table which holds the basin can rotate about the support. Determine and indicate in millimetres on your drawing the difference between the minimum and maximum distance of

Part	Name	Qty.
1	Wall plate	1
2	Table	1
3	Connect piece	1
4	Basin	1
5	Support	2

Scale 1:2

2

3

5

Fig. C-5

BLANK PAGE

BLANK PAGE

