

2011 L.85_A 16/16

## SECTION A - Core - Answer Any Three of the questions on this A3 sheet

A-1. The drawing on the right shows the plan and elevation of a hemisphere. A point P on the front of the hemisphere is shown in the elevation.
A 3D graphic is also given below.
(a) Locate point P in plan and draw the projections of a sphere which rests on the horizontal plane and which touches the given sphere at point $P$.
(b) Determine the traces of the plane which is tangential to the two solids and is inclined at 45 degrees to horizontal plane.


A-3. The 3D graphic below shows a litter bin.
The diagram on the right shows the elevation of the top section which is sectioned as shown. The true shape of the sloping section is elliptical.
(a) Use a focal sphere to find the focus, vertex and directrix of the elliptical section.
(b) Draw a portion of the ellipse.


A-4. The 3D graphic below shows a table lamp.
The drawing on the right shows
the elevation and plan of the
lampshade.
Draw an auxiliary plan of the lampshade which will show the true shape of surface A.


## Pre-Leaving Certificate Examination, 2011

## Design \& Communication Graphics Higher Level <br> Section B and C (180 Marks)

Time: 3 Hours

```
This examination is divided into three sections:
SECTION A (Core - Short Questions)
SECTION B (Core - Long Questions)
SECTION C (Applied Graphics - Long Questions)
```

- Four questions are presented.

SECTION A - Answer any three on the accompanying A3 examination paper.

- All questions in Section A carry 20 marks each.
- Three questions are presented.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry $\mathbf{4 5}$ marks each.
- Five questions are presented.

SECTION C - Answer any two (i.e. the options you have studied) on drawing paper.

- All questions in Section C carry $\mathbf{4 5}$ marks each.


## General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only
- All dimensions are given in metres or millimetres.
- Write your name, school name and teacher name in the box provided on Section A and on all other sheets used.


## SECTION B - Core

Answer Any Two questions from this section on drawing paper

B-1. The 3D graphic on the right shows a mantelpiece clock.
Fig. B-1 below shows the plan and elevation of the clock. (The details of the clock face may be ignored for the purpose of your drawing).
Make a perspective drawing of the clock given the following:

- The picture plane passes through corner A
- The spectator $S$ is 250 mm from corner A
- The horizon line is 120 mm above the ground line


## Use auxiliary vanishing points where appropriate.



Scale 1:2



Fig. B-1

B-2. The 3D graphic on the right shows a square based litter bin with a sloping top.
Fig. B-2 below shows the plan and elevation of the bin.
(a) Draw the plan and elevation of the bin where point B is 50 mm from the vertical plane and the line AB is 50 mm from the vertical plane and the line
inclined at 60 degrees to the vertical plane. (The openings at the top of the bin are not included in the drawing and are not required).
(b) Draw the traces of the oblique plane VTH which contains surface S .
(c) Find the dihedral angle between the surfaces S and T

Scale 1:10

## BLANK PAGE



Fig. B-2

Fig. B-3 below shows the plan and elevation. The orientation of a trimetric axes is also shown
(a) Draw the trimetric axes.
(b) Draw the elevation and plan in their correct positions relative to the axis.
(c) Draw a trimetric projection of the whistle.

Scale 2:1



Fig. B-3

## Assemblies

C-5. Details of a Pull Along Toy which was bought in a pre-assembled format are shown in Fig. C-5. The Toy has been disassembled.
The parts list is given on the right and a 3D Graphic of the assembled toy is also shown.
(a) Draw a full size sectional elevation on a A-A showing the parts fully assembled. The Tail should be at its highest altitude in the assembly.
(All drilled holes are 5 mm diameter and any omitted dimensions may be estimated).
(b) Determine and indicate on your drawing the height difference the tail is subject to as the toy rolls through a complete revolution.

| Part | Name | Qty. |
| :---: | :--- | :---: |
| 1 | Body | 1 |
| 2 | Head | 1 |
| 3 | Dowel | 1 |
| 4 | Axle / Dowel | 3 |
| 5 | Tail | 1 |
| 6 | Neck | 1 |
| 7 | Cam | 1 |
| 8 | Tail End | 1 |
| 9 | Wheels | 4 |
| 10 | Ear | 2 |

(1)

(8)


(2)

(6)
0
3

(7)


## Dynamic Mechanisms

C-4. (a) The 3D graphic on the right shows a pull-along toy. A cam is attached to the front axle of the toy which causes the head to move up and down as the toy is pulled along.

The nearest approach of the in-line follower to the cam centre is 18 mm . The plate cam rotates in a clockwise direction imparting motion to an in-line flat follower that extends 6 mm to either side of the centre line:

Draw the cam profile and displacement diagram given the following data:
$0^{\circ}$ to $90^{\circ} \quad$ Uniform acceleration and retardation rise of 30 mm ;
$90^{\circ}$ to $180^{\circ}$ Uniform velocity rise of 15 mm ;
$180^{\circ}$ to $240^{\circ}$ Dwell;
$240^{\circ}$ to $360^{\circ}$ Simple harmonic fall of 45 mm .
(b) The 3D graphic on the right shows an elliptical trainer. The mechanism is shown in line-diagram format in Fig. C-4 below.
In the diagram, points O and C are fixed. A and B are pin joints and A rotates about O . Point F represents the position of the foot and is in a fixed position on AB .

Plot the locus of point P for the movement of the trainer.
Scale 1:10



## SECTION C - Applied Graphics

## Answer Any Two questions (i.e. the options you have studied)

 from this section on drawing paper.
## Geologic Geometry

C-1. (a) The accompanying map, located on the back page of section A , shows ground contours at five metre vertical intervals.

ABC is the centreline of the proposed roadway. The section of roadway between A and B is level at an altitude of 90 m . The section from B to C has a gradient of 1 in 15 rising.
Using side slopes of 1 in 1 for the embankments and 1 in 1.5 for the cuttings, complete the earthworks necessary to accommodate the roadway.
Note: The earthworks on the southern side of the roadway have already been completed.
(b) On the map, D and E are outcrop points on the top surface of a stratum of ore The strike of the stratum is N60W.
(i) Determine the dip of the stratum.

A skew bore-hole at E is drilled in a westerly direction in plan and has an actual inclination of 45 degrees to the horizontal plane. It reveals the actual thickness of the stratum equal to 20 m .
(ii) Find the true length of the bore-hole.

## Structural Forms

C-2. The 3D graphic on the right shows a modern chair, which has a seat in the form of a hyperbolic paraboloid ABCD.

The projections of the chair are shown in Fig. C-2 below. The back of the chair is a ruled surface which intersects the seat to form a line in plan.
(a) Draw the given plan and elevation of the chair.
(b) Find the true inclination between the plane director for the elements $\mathrm{AB}, \mathrm{CD}$ and BC .

Scale 1:4


Fig. C-2

## Surface Geometry

C-3. The photograph on the right shows the roof of a house.
The projections of a portion of the roof are shown in Fig. C-3 below. Roof surfaces A and B are inclined at $60^{\circ}$ and $45^{\circ}$ respectively.
(a) Draw the elevation and plan of the roofing surfaces A and B.
(b) Find the dihedral angle between surfaces A and B.
(c) Draw the elevation and plan of the conical and cylindrical surfaces showing clearly how to find the curve of intersection with surfaces A and B.

## Scale 1:40



Pre-Leaving Certificate Examination, 2012

## Design \& Communication Graphics Higher Level Sections B and C (180 marks)

Time: 3 Hours

## BLANK PAGE

```
This examination is divided into three sections:
SECTION A (Core - Short Questions)
SECTION B (Core - Long Questions)
SECTION C (Applied Graphics - Long Questions)
```

- Four questions are presented.

SECTION A - Answer any three on the accompanying A3 examination paper.

- All questions in Section A carry 20 marks each.
- Three questions are presented.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry $\mathbf{4 5}$ marks each.
- Five questions are presented.

SECTION C - Answer any two (i.e. the options you have studied) on drawing paper.

- All questions in Section C carry $\mathbf{4 5}$ marks each.


## General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only
- All dimensions are given in metres or millimetres.
- Write your name, school name and teacher name in the box provided on Section A and on all other sheets used.


## SECTION B - Core

Answer Any Two questions from this section on drawing paper

B-1. The 3D graphic on the right shows a building which is located in Dublin.
The front portion of the building is comprised of a cylinder which is inclined to the horizontal plane and is cut by two cutting planes. The dihedral angle between the cutting planes is $90^{\circ}$.

Fig. B-1 below shows the outline plan and elevation of the cylindrical portion of the building orientated with its axis in a vertical position.

(a) Draw the given plan and elevation of the building.
(b) Determine the horizontal and vertical traces of the oblique plane that contains the surface $\mathbf{A}$ of the building.
(c) Determine the inclination of this oblique plane to the vertical plane.

Scale 1:200


Fig. B-1

B-2. The 3D graphic on the right shows a crusader helmet from a suit of armour. It consists of two truncated cones
Fig. B-2 below shows the elevation of the helmet.
(a) Draw the given elevation and project an end view in the direction of arrow $\mathbf{A}$.
(b) Draw the true shape of the elliptical opening.
(c) Draw the elevation of a focal sphere and, on your drawing, establish the position of the focal point and directrix for the elliptical opening at the bottom of the helmet.

Scale 1:4

## BLANK PAGE



Fig. B-2

B-3. The 3D graphic on the right shows three stability balls. The red and green balls are in contact and the red and orange balls are in contact. All three balls rest on the horizontal plane.

Fig. B-3 below shows the elevation of the red and green balls The elevation of the point of contact between the red and orange balls is also shown.
(a) Draw the given elevation and project the plan of the red and green balls
(b) Draw the projections of the orange ball in contact with the red ball at point $\mathbf{P}$.
(c) Determine the traces of the tangent plane to the red and orange spheres which passes between spheres.

Fig. B-3


## Assemblies

C-5. (a) Details of a disassembled Toy Train are shown in Fig. C-5 The parts list is given on the right and a 3D Graphic of the assembled Toy is also shown.
Draw a full size sectional elevation on $\mathrm{A}-\mathrm{A}_{1}$ showing the parts fully assembled.
(All drilled holes are 5 mm diameter and can be drawn freehand.)
(b) Establish the height difference that can be achieved by the chimney.

Scale 1:1
(1)


| Part | Name | Qty. |
| :---: | :--- | :---: |
| 1 | Base | 1 |
| 2 | Cabin | 1 |
| 3 | Dowel | 2 |
| 4 | Axle | 3 |
| 5 | Cam | 1 |
| 6 | Engine | 1 |
| 7 | Moving Stack | 1 |
| 8 | Chimney | 1 |
| 9 | Wheels | 6 |



(2)

(6)

(7)

(-) 尺े
(8)

(9)


## Dynamic Mechanisms

C-4. (a) The 3D graphic below shows a cylindrical storage container. Fig. C-4(a) on the right shows the projections of the storage cylinder.

A helical stairs is to be fitted to the outside of the storage cylinder to act as a fire escape. It will travel from top to bottom of the cylinder and pass through points $\mathbf{A}$ and $\mathbf{B}$.
(i) Draw the given views.
(ii) Draw the elevation of the helix


Scale 1:50


Fig. C-4(a)
(b) The 3D graphic on the right shows a person on a swing. Fig. C-4(b) below is a line diagram showing the movement of the swing.
Point $\mathbf{P}$ shows the position of the person's hands when the swing is in a stationary position and about to rotate to the right.

As the swing rotates to the right through an angle of $90^{\circ}$ and back to its pre-set position she moves her hands along the rope from $\mathbf{P}$ to $\mathbf{P}_{1}$.

Plot the locus of point $\mathbf{P}$ for the combined movement.
Scale 1:10


## Structural Forms

C-2. The 3D graphic on the right shows a building which consists of five roofing shells.

Fig. C-2 below shows the projections of one roofing shell. It is created by translating the parabola $\mathbf{A B C}$ in a vertical position along the parabola $\mathbf{B D}$ which has its vertex at $\mathbf{D}$

The roofing shell is sectioned as shown and a vertical curved
 glass wall intersects the roofing shell

Draw the given views and project an end view of building.
Scale 1:200


Fig. C-2

## Surface Geometry

C-3. The 3D graphic on the right shows a modern house. It is based on a right cone which rests on one of its elements and is sectioned as shown.

Fig. C-3 below shows the projections of the outline of the house.
(a) Draw the given views

(b) Find the dihedral angle between surfaces $\mathbf{A}$ and $\mathbf{B}$.

Scale 1:100



Fig. C-3

