

Design & Communication Graphics Ordinary Level Section A (60 marks)

Time: 3 Hours

This examination is divided into three sections:

SECTION A (Core - Short Questions)
SECTION B (Core - Long Questions)

SECTION C (Applied Graphics - Long Questions)

SECTION A •

- Four questions are presented.
- Answer any three on the A3 sheet overleaf.
- All questions in Section A carry 20 marks each.

SECTION B

- Three questions are presented.
- Answer any two on drawing paper.
- All questions in Section B carry 45 marks each.

SECTION C

- Five questions are presented.
- Answer **any two** (i.e. the options you have studied) on drawing paper.
- All questions in Section C carry 45 marks each.

General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your Name, School's Name and Teacher's Name in the box below and on all other sheets used.

Name:
School's Name:
Teacher's Name:

This Contour Map is part of Section C and should only be used for the answering of the Geologic Geometry
Option (Question C-1).

lf-b44b97f0a8

2020.1 L.84_A 16/16

60

SECTION A - Core - Answer **any three** of the questions on this A3 sheet.

A-1. The graphic below shows a logo for the Rugby World Cup which took place in Japan. It consists of an ellipse and a number of inner arcs.

The drawing on the right shows the major and minor circles for the ellipse. Portions of the ellipse and of the inner arcs are also shown.

- (a) Locate the remaining points on the ellipse and draw the curve.
- **(b)** Locate the focal points of the ellipse.
- (c) Locate the centre point for the arc on the right and complete the drawing.

A-3. The 3D graphic below shows a garden decoration. The decoration is pentagonal in cross-section.

The drawing on the right shows the plan, the incomplete elevation and the incomplete end view of a similar solid.

- (a) Complete the elevation and the end view.
- **(b)** Find the true shape of the pentagonal surface **A**.

A-2. The image below shows a concrete garden feature.

The drawing on the right shows the partial plan and the partially completed perspective view of the garden feature.

Complete the perspective drawing.

A-4. The 3D graphic below shows a conical table with a stool.

The drawing on the right shows the plan and the elevation of the truncated cone **A** which is positioned as shown. The elevations of cylinder **B** and cylinder **C** are also shown. Both are in contact with the truncated cone.

- (a) Draw the plan of cylinder B.
- (b) Draw the plan of cylinder C.

This examination paper must be returned at the end of the examination - You must include your Name, School Name and Teacher's Name on the front cover.

2020.1 L.84_A 2/16

There is no examination material on this page

Pre-Leaving Certificate Examination, 2020

Design & Communication Graphics Ordinary Level Sections B and C (180 marks)

Time: 3 Hours

This examination is divided into three sections:

SECTION A (Core - Short Questions)
SECTION B (Core - Long Questions)

SECTION C (Applied Graphics - Long Questions)

SECTION A

- Four questions are presented.
- Answer **any three** on the accompanying A3 examination paper.
- All questions in Section A carry 20 marks each.

SECTION B

- Three questions are presented.
- Answer any two on drawing paper.
- All questions in Section B carry 45 marks each.

SECTION C

- Five questions are presented.
- Answer **any two** (i.e. the options you have studied) on drawing paper.
- All questions in Section C carry 45 marks each.

General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- The graphics presented are not necessarily drawn to scale and must not be used for scaling purposes.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your Name, School's Name and Teacher's Name in the box provided on section A and on all other sheets used.

SECTION B - Core

Answer **any two** questions from this section on drawing paper.

B-1. The graphic on the right shows a conservatory which has been added to the back of a house.

Fig. B-1 below shows an isometric view of a model of a similar structure.

- (a) Draw the plan of the structure.
- **(b)** Project an elevation from the plan looking in the direction of the arrow.
- (c) Draw an auxiliary elevation of the structure, projected from the plan, which will include the true shape of surface A.

Scale 1:1

Fig. B-1

There is no examination material on this page

There is no examination material on this page

- **B-2.** The graphic on the right shows a perfume bottle.
 - Fig. B-2 below shows an incomplete isometric projection of a similar perfume bottle.

The elevation and plan of the perfume bottle are also shown in the required positions.

- (a) Draw the given equilateral triangle abc and the axonometric axes X, Y and Z.
- **(b)** Draw the elevation and plan positioned as shown.
- (c) Draw the axonometric projection of the main body of the bottle.

- **B-3.** The image on the right shows a portion of a garden fence. It consists of vertical poles with three horizontal rails.
 - Fig. B-3 below shows the elevation and plan of a similar vertical pole and triangular rail which intersect.
 - (a) Draw the given plan and elevation showing all lines of interpenetration.
 - **(b)** Project an end view of the pole and rail.

Scale 1:1

Assemblies

C-5. The graphic on the right shows a series of spice jars.

Details of the parts which make a spice rack to hold the spice jars are given in Fig. C-5 below. A parts list is also shown.

Draw the *sectional elevation* A-A of the assembled spice rack.

(Any omitted dimensions may be estimated.)

132

ale 1:1	Part	Name	Qty.
	1	Handle	1
	2	Base	1
	3	Side panel	2
	4	Rod	2
A			

Coo	Scale 1:1	Part	Name	Qty.
302		1	Handle	1
		2	Base	1
		3	Side panel	2
		4	Rod	2
		5	Foot	2
	24			

Dynamic Mechanisms

C-4. (a) The graphic on the right shows a series of cam mechanisms from the engine of a dune buggy.

A cam, similar to the one shown, imparts the following motion to an inline knife-edge follower:

- 0° to 150° Rise 45mm with uniform velocity
- 150° to 240° Dwell
- 240° to 360° Fall 45mm with simple harmonic motion.

Draw the displacement diagram for the cam.

(Note: It is not necessary to draw the cam profile.)

(In the displacement diagram, use a distance of 15mm to represent each 30° interval.)

(b) The wheels of the dune buggy rotate clockwise as it rolls forward.

In Fig. C-4(b) below, circle **C** represents the wheel.

In the diagram, circle **C** rolls clockwise along line **AB** for one full revolution.

Plot the locus of point P for this movement.

Scale 1:1

2020.1 L.84_B/C 10/16

Fig. C-4(b)

SECTION C - Applied Graphics

Answer **any two** questions (i.e. the options you have studied) from this section on drawing paper.

Geologic Geometry

- **C-1.** The accompanying map, located on the back page of Section A, shows ground contours at five metre vertical intervals.
 - (a) On the drawing supplied, draw a vertical section (profile) on the line AB.
 - (b) Find and indicate on the map the maximum height difference along the profile AB.
 - (c) CD is the centreline of a proposed roadway which is level at an altitude of 85m.

 Using side slopes of 1:1 for the embankments, complete the earthworks on the northern side, which are necessary to accommodate the roadway.

(**Note:** The earthworks on the southern side of the roadway have already been completed.)

Scale 1:1000

8

5

Structural Forms

C-2. The graphic on the right shows a modern church. Its roof is in the form of a hyperbolic paraboloid.

The plan and elevation of a typical hyperbolic paraboloid surface are shown in Fig. C-2.

- (a) Draw the given plan and elevation of the hyperbolic paraboloid surface.
- **(b)** Project an end view of the hyperbolic paraboloid surface.

Scale 1:1

Fig. C-2

Surface Geometry

C-3. The graphic on the right shows a handbag.

Fig. C-3 below shows the plan and elevation of a design for a handbag.

- (a) Draw the plan and elevation of the handbag as shown in Fig. C-3.
- (b) Project an end view of the handbag.
- **(c)** Draw a one-piece surface development of the handbag.

(**Note:** Ignore the handle of the bag for the purpose of your drawing.)

Scale 1:1

Fig. C-3