

Pre-Leaving Certificate Examination, 2018

Design \& Communication Graphics Higher Level

Section A (60 marks)
Time: 3 Hours

This examination is divided into three sections:	
SECTION A	(Core - Short Questions)
SECTION B	(Core - Long Questions)
SECTION C	(Applied Graphics - Long Questions)

$\begin{array}{ll} & \text { - Four questions are presented. } \\ \text { SECTION A } & \text { - Answer any three on the A3 sheet overleaf. }\end{array}$

- All questions in Section A carry 20 marks each.

SECTION B

- Three questions are presented
- Answer any two on drawing paper.
- All questions in Section B carry 45 marks each.

SECTION C

- Five questions are presented.
- Answer any two (i.e. the options you have studied) on drawing paper
- All questions in Section C carry 45 marks each.

General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your Name, School Name and Teacher's Name in the box below and on all other sheets used.

Page 1 of 3

SECTION A - Core - Answer any three of the questions on this A3 sheet.

A-1. The image below shows a post box. A set of dimetric axes is shown on the right and the elevation and plan of the post box have been positioned as shown.
(a) Draw the axonometric projection of the post box.
(b) Determine the true shape of the curved surface of the post box.

A-2. The graphic below shows a modern house. The main roof is based on a parabola.

The drawing on the right shows the axis $\mathbf{A A}_{1}$, the directrix DD_{1} and the focus \mathbf{F}, of a similar parabola. \mathbf{P} is a point on the directrix.

(a) Locate the vertex and draw a portion of the parabola.
(b) Draw a tangent to the curve at the point \mathbf{P}.

A-3. The graphic below shows a tablet and stand
The drawing on the right shows the plan and partially completed elevation of a similar tablet.
(a) Complete the elevation of the sloping surface ABCD
(b) Determine the vertical and horizontal traces of the oblique plane which contains the surface ABCD

A-4. The graphic below shows a table which is based on an inverted tetrahedron.

The drawing on the right shows the incomplete plan and elevation of a similar inverted tetrahedron.
(a) Complete the plan and elevation of the tetrahedron.
(b) Draw the plan and elevation of the largest possible sphere that could be contained inside the tetrahedron.

Pre-Leaving Certificate Examination, 2018

Design \& Communication Graphics Higher Level
 Sections B and C (180 marks)

Time: 3 Hours

BLANK PAGE

This examination is divided into three sections:	
SECTION A	(Core - Short Questions)
SECTION B	(Core - Long Questions)
SECTION C	(Applied Graphics - Long Questions)

- Four questions are presented.

SECTION A - Answer any three on the accompanying A3 examination paper.

- All questions in Section A carry $\mathbf{2 0}$ marks each.
- Three questions are presented.

SECTION B - Answer any two on drawing paper.

- All questions in Section B carry 45 marks each.
- Five questions are presented.

SECTION C - Answer any two (i.e. the options you have studied) on drawing paper.

- All questions in Section C carry 45 marks each.

General Instructions:

- Construction lines must be shown on all solutions.
- Write the question number distinctly on the answer paper in Sections B and C.
- Work on one side of the drawing paper only.
- All dimensions are given in metres or millimetres.
- Write your Name, School Name and Teacher's Name in the box provided on section A and on all other sheets used.

SECTION B - Core

Answer any two questions from this section on drawing paper.

B-1. The image on the right shows a concrete garden table.
The table comprises regular pentagons for the top and base These pentagons are connected by a series of ten identical triangles. The height of the table is 900 mm .

Fig. B-1 shows the plan of the table.

(a) Draw the given plan of the pentagons and of the surfaces ABC and ABD.
(b) Draw an elevation of the surfaces $\mathbf{A B C}$ and $\mathbf{A B D}$. Determine the dihedral angle between these two surfaces.
(c) Determine the traces of the surface $\mathbf{A B C}$ and then determine the inclination of the surface $\mathbf{A B C}$ to the vertical plane.

B-2. The image on the right shows a display stand used for necklaces in a jewellery shop

Fig. B-2 below shows the elevation and plan of a similar display stand. The curve AB is parabolic, with its vertex at \mathbf{A}. A truncated cylinder penetrates the shaped base as shown.
(a) Draw the given plan and elevation of the display stand.
(b) Project an end view in the direction of arrow \mathbf{A}.

Scale 1:4

BLANK PAGE

B-3. Fig. B-3 shows the plan and elevation of a speaker, similar to the one shown in the image on the right.

Draw the given plan and make a perspective drawing of the structure, given the following:

- The spectator point, \mathbf{S}, is 375 mm from corner \mathbf{A}
- The picture plane is touching corner \mathbf{A}
- The horizon line is 200 mm above the ground line.

Use an auxiliary vanishing point to determine the sloping surface of the speaker in the perspective drawing

Scale 1:5

Fig. B-3

Assemblies

C-5. Details of a camera clamp are shown in Fig. C-5. The clamp can be fixed to cylindrical bars of various radii. The parts list given on the right together with a partially exploded 3D graphic of the camera clamp and its constituent parts.
(a) Draw a full-size sectional elevation on A-A, showing the parts fully assembled and fixed to a cylindrical bar with a radius of 10 mm Unless otherwise stated, fillets are 6 mm and chamfers $1 \times 1 \mathrm{~mm}$. Some dimensions have been removed for clarity and any omitted dimensions may be estimated.)
(b) Determine, and indicate on your drawing, the maximum radius of a cylindrical bar that the camera clamp can be fixed to

$$
1
$$

84

5

6

7
40 \qquad 10

Dynamic Mechanisms

C-4. (a) The image on the right shows a spiral staircase.
The design is based on a Logarithmic spiral.
Draw a Logarithmic spiral. The spiral has an initial radius of 80 mm with each successive radius reducing in a ratio of $8: 7$ over 30°.

Scale 1:1

(b) The graphic on the right shows a teleporter. Details of the teleporter are given in Fig. C-4(b) below.

Along with the ability to rotate, the main arm of the teleporter is telescopic and extends if required.

The telescopic arm extends from AB to AD while the platform BC remains horizontal. At the same time, the
 teleporter moves forward, with the wheel \mathbf{K} rolling clockwise for half of one revolution.

SECTION C - Applied Graphics

Answer any two questions (i.e. the options you have studied) from this section on drawing paper.

Geologic Geometry

C-1. (a) The accompanying map, located on the back page of Section A, shows ground contours at one metre vertical intervals on a proposed path to a circular tee area at a golf course

On the map, $\mathbf{A B C}$ is the centreline of the path and \mathbf{O} is the centre of the circular tee area.
The path has the following specifications:

- the portion of the path between \mathbf{A} and \mathbf{B} is level at an altitude of 45 m
- the portion of the path from \mathbf{B} to \mathbf{C} is rising uniformly to a level of 46 m at \mathbf{C}
- the circular tee area is level at an altitude of 46 m

Using side slopes of 1 in 1 for the cuttings and 1 in 1.5 for the embankments, complete the earthworks necessary to accommodate the path and tee area.
(b) The designer of the golf course is considering elevating the tee area to an altitude of 47 m . On the same contour map, show the earthworks necessary to accommodate the higher tee area. Points A, B and C in the elevated tee area are at $45 \mathrm{~m}, 45 \mathrm{~m}$ and 47 m , respectively.

Structural Forms

Surface Geometry

C-2. The image on the right shows the L'Oceanographic, an oceanarium in Valencia, Spain. The roof structure is based on a hyperbolic paraboloid.

Fig. C-2 shows the plan and elevation of the roof structure which is sectioned as shown.

The generating parabola $\mathbf{A B C}$ is represented by a dotted line in the outline end view and it moves in vertical position along the parabola BD.

B is the vertex of the parabola $\mathbf{A B C}$ and \mathbf{D} is the vertex of the parabola BD.
(a) Draw the given elevation of the structure.
(b) Draw the end view of the generating parabola $\mathbf{A B C}$
(c) Project the plan of the structure.
(d) Determine the true shape of the surface EBF

Scale 1:200

Fig. C-2

